博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
ROC曲线(receiver-operating-characteristic curve)-阈值评价标准(转)
阅读量:6624 次
发布时间:2019-06-25

本文共 1892 字,大约阅读时间需要 6 分钟。

转自:

ROC曲线指受试者工作特征曲线 / 接收器操作特性曲线(receiver operating characteristic curve), 是反映敏感性和特异性连续变量的综合指标,是用构图法揭示敏感性和特异性的相互关系,它通过将连续变量设定出多个不同的临界值,从而计算出一系列敏感性和特异性,再以敏感性为纵坐标、(1-特异性)为横坐标绘制成曲线,曲线下面积越大,诊断准确性越高。在ROC曲线上,最靠近坐标图左上方的点为敏感性和特异性均较高的临界值。

ROC曲线的例子

  考虑一个二分问题,即将实例分成正类(positive)或负类(negative)。对一个二分问题来说,会出现四种情况。如果一个实例是正类并且也被 预测成正类,即为真正类(True positive),如果实例是负类被预测成正类,称之为假正类(False positive)。相应地,如果实例是负类被预测成负类,称之为真负类(True negative),正类被预测成负类则为假负类(false negative)。

  列联表如下表所示,1代表正类,0代表负类。

从列联表引入两个新名词。其一是真正类率(true positive rate ,TPR), 计算公式为TPR=TP/ (TP+ FN),刻画的是分类器所识别出的 正实例占所有正实例的比例。另外一个是假正类率(false positive rate, FPR),计算公式为FPR= FP / (FP + TN),计算的是分类器错认为正类的负实例占所有负实例的比例。还有一个真负类率(True Negative Rate,TNR),也称为specificity,计算公式为TNR=TN/ (FP+ TN) = 1-FPR。

其中,两列True matches和True non-match分别代表应该匹配上和不应该匹配上的

两行Pred matches和Pred non-match分别代表预测匹配上和预测不匹配上的

FPR = FP/(FP + TN) 负样本中的错判率(假警报率)

TPR = TP/(TP + FN) 判对样本中的正样本率(命中率)

ACC = (TP + TN) / (P+N) 判对准确率

  在一个二分类模型中,对于所得到的连续结果,假设已确定一个阀值,比如说 0.6,大于这个值的实例划归为正类,小于这个值则划到负类中。如果减小阀值,减到0.5,固然能识别出更多的正类,也就是提高了识别出的正例占所有正例 的比类,即TPR,但同时也将更多的负实例当作了正实例,即提高了FPR。为了形象化这一变化,在此引入ROC,ROC曲线可以用于评价一个分类器。

ROC曲线和它相关的比率

(a)理想情况下,TPR应该接近1,FPR应该接近0。

ROC曲线上的每一个点对应于一个threshold,对于一个分类器,每个threshold下会有一个TPR和FPR。

比如Threshold最大时,TP=FP=0,对应于原点;Threshold最小时,TN=FN=0,对应于右上角的点(1,1)

(b)随着阈值theta增加,TP和FP都减小,TPR和FPR也减小,ROC点向左下移动;

  Receiver Operating Characteristic,翻译为"接受者操作特性曲线",够拗口的。曲线由两个变量1-specificity 和 Sensitivity绘制. 1-specificity=FPR,即假正类率。Sensitivity即是真正类率,TPR(True positive rate),反映了正类覆盖程度。这个组合以1-specificity对sensitivity,即是以代价(costs)对收益(benefits)。

       此外,ROC曲线还可以用来计算“均值平均精度”(mean average precision),这是当你通过改变阈值来选择最好的结果时所得到的平均精度(PPV).

  下表是一个逻辑回归得到的结果。将得到的实数值按大到小划分成10个个数 相同的部分。

其正例数为此部分里实际的正类数。也就是说,将逻辑回归得到的结 果按从大到小排列,倘若以前10%的数值作为阀值,即将前10%的实例都划归为正类,6180个。其中,正确的个数为4879个,占所有正类的 4879/14084*100%=34.64%,即敏感度;另外,有6180-4879=1301个负实例被错划为正类,占所有负类的1301 /47713*100%=2.73%,即1-特异度。以这两组值分别作为x值和y值,在excel中作散点图。

转载地址:http://lctpo.baihongyu.com/

你可能感兴趣的文章
MySQL备份账号权限
查看>>
15个重要的Android代码
查看>>
(转)android 牛人必修 ant 编译android工程
查看>>
求最大公约数与最小公倍数
查看>>
C# Winform 跨线程更新UI控件常用方法总结(转)
查看>>
eclipse菜单栏不显示 + the system is running in lou-graphics mode问题
查看>>
【WebService】使用jaxb完成对象和xml的转换
查看>>
如何去除My97 DatePicker控件上右键弹出官网的链接 - 如何debug混淆过的代码
查看>>
多文档
查看>>
输入5个学生的信息(包括学号,姓名,英语成绩,计算机语言成绩和数据库成绩), 统计各学生的总分,然后将学生信息和统计结果存入test.txt文件中...
查看>>
BZOJ2337 [HNOI2011]XOR和路径
查看>>
C# 该行已经属于另一个表 ...
查看>>
android 避免线程的重复创建(HandlerThread、线程池)
查看>>
手游-放开那三国socket协议分析
查看>>
SQL Lazy Spool Eager Spool
查看>>
type的解释
查看>>
Windows Phone 8 开发环境搭建
查看>>
2017:IDC市场规模将持续增长 增速放缓
查看>>
从自动驾驶到学习机器学习:解读2017科技发展的15大趋势
查看>>
SinoBBD探索"一体化"大数据创新发展
查看>>